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PROPAGATION OF NONLINEAR LONGITUDINAL WAVES IN POROUS SATURATED MEDIA 

A. M. lonov, V. K. Sirotkin, and E. V. Sumin UDC 534.222 

A considerable number of works have been devoted to aspects of low- amplitude wave 
propagation in saturated porous media. A detailed bibliography of studies on this question 
is given in [i]. As experiments show, the upper layer of the earth's core is characterized 
by anomalously high values of the nonlinearity parameter [2, 3]. In view of this there is in- 
terest in questions connected with studying the propagation of finite-amplitude waves in 
porous media also exhibiting dispersion-dissipative properties. Nonlinear waves in a 
Rakhmatullin model (model of equal phase pressures) were considered in [4]. However, it is 
applicable to a very limited class of geological materials. 

In this work a second approximation equation (KdVB) has been ~btained describing propa- 
gation of longitudinal waves of finite amplitude in saturated porous media. In contrast to 
[4], in the model in question equality was assumed for pressure in the solid and liquid 
phases. Analysis of the effect of strength properties for the matrix and impregnating com- 
ponent on the nonlinear dissipative properties of the medium was carried out both for weakly 
cemented (sands) and for strongly cemented (andesite, granite) materials. Within the sug- 
gested model it is possible to describe the anomalously high values of nonlinearity parameter 
observed by experiment. 

i. Continuity and pulse equations for the solid and liquid phases for unidimensional 
planar movement of a water-saturated medium have the form [i, 5] 

O ( l _ m )  p ~ +  o ( l - - m )  O, a o o~ -$7 P:u:  = ~ mP~' + ~ mp2u" = O, 

(t - -  m,) p, ~--~ + u~ o,,: ] ox + ~ o~ 

~1'., { au 2 Ou.," X 01,.,. R - - ( | - - m ) ~ -  + H +  ( ] - - m )  pag, ml) 2~- -~+  u . , - O f f x - } = - - m , ~ - -  + m,(p.zg , 

(1.1) 

where P:, P~, and u:, u 2 are solid and liquid phase density and velocity, respectively; m is 
medium porosity; P2 is pore pressure; Peff and ~eff are effective pressure and tangential 
stress in the medium. Effective pressure Peff is determined by the difference between pres- 
sure in the medium p = (i - m)p: + mp2 (P: is pressure in the solid phase) and pore pressure 

P2: 

Pe~, = p - - p 2  = (l - -  m)(p: - -  p=). ( 1 . 2 )  

We consider the deformation properties of a porous medium saturated with liquid. We 
shall assume that the difference in current porosity from porosity in the unloaded state is 
entirely connected with contact compressibility of particles. Whence it follows that poros- 
ity only depends on the difference of pressures in the solid phase and in the liquid satu- 
rating the pores, and there is a clear correlation between m and Peff: 

.~  - -  re(pelf). (1.8) 
For dry rock Peff = P" Therefore, the rule for the change in porosity due to effective 
pressure (1.3) may be determined from data for the dependence of dry rock compressibility 
on pressure. 
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In the elastic region shear strains are determined by the shear modulus G. As follows 
from experiments, elasticity moduli for porous media do not depend in a linear way on pres- 
sure [6, 7]. Assuming that G = G(Peff), we shall describe the behavior of tangential stress 
by Hooke's law 

OtL 1 
OTef f 0%ff = G (Peff) ~-77-x" ( 1 . 4 )  0"--7- + ul ~J* 

It would be correct to transpose relationships (1.3) and (1.4) with the onset of plastic 
acts such as infilling of pores, a dilation effect, etc. 

An equation of state for each of the phases is taken in the form of a Tate equation 

p ~ = ~  ~p - t  (~=1,2), (1.5) 

where K i a r e  v o l u m e t r i c  c o m p r e s s i o n  modul i  f o r  t h e  s o l i d  and l i q u i d  p h a s e s  w i t h  Pi  = 0; 7 i  
a r e  c o n s t a n t s  g o v e r n i n g  t h e  n o n l i n e a r  p r o p e r t i e s  o f  t h e  p h a s e s .  

I n t e r p h a s e  f r i c t i o n  f o r c e  R in  t h e  e q u a t i o n  f o r  phase  movement i s  p r o p o r t i o n a l  t o  t h e  
d i f f e r e n c e  i n  mass v e l o c i t i e s  f o r  t h e  p h a s e s  [ 1 ] :  

R = m2~ (u., - -  uJ .  ( 1 . 6 )  

Here ~ is liquid viscosity; k 0 is permeability factor for the medium. 

System (1.1)-(1.6) linearized chose to the initial condition describes propagation of 
longitudinal first and second-order waves of low amplitude in water-saturated porous media 
[i]. In this work only a first-order low-frequency wave is considered with characteristic 
frequency ~ << i/tp, where tp = k0(l - m)pzp2/(mpp) is relaxation time for mass velocity; 
p = (i - m)pl + mp2 is equilibrium density of the medium. It is noted that in a linear 
approximation system (1.1)-(1.6) is entirely equivalent to a linearized set of equations 
describing movement of a porous water-saturated medium obtained in [i]. In this way elastic- 
ity modulus for volumetric compression of the matrix K is connected with effective pressure 

Peff by the relationship K (I m) dPefrl(1 d l)eff ~ t 

We expand set (1.1)-(1.6) with respect to Mach number M to the second power inclusively. 
In a linear approximation in a wave propagating in one direction changes of all of the values 
may be expressed in terms of one (e.g., in terms of the average mass velocity v). By using 
locally linear relationships with substitution in nonlinear terms we arrive at a nonlinear 
equation for v. Assuming the distortion of the wave profile caused by nonlinear and dis- 
persion-dissipative effects only develops at distances much greater than the characteristic 
wavelength I of the emitted signal, it is possible separate independent variables into 
"rapid" T = t -x/c and "slow" x(lav/Sx I << ~Isv/a~l). By changing over to associated coor- 
dinates and discarding terms of higher orders we obtain an equation of second approximation 
describing propagation of first-order nonlinear waves in saturated porous media (a Korte- 
weg-de Vries-Burgers equation) : 

c~V g c)V 02V 03V 

0"1; 3 .  ( I .  7) 

The first term in the left-hand part of (1.7) describes wave distortion as a result of non- 
linear effects, the second and third parts describe it as a result of viscosity and dis- 
persion effects caused by interphase friction. Equation (1.7) is valid with the conditions 
eM ~ i, ctp ~ % ~ ~s (s = 12/4q c2 is attenuation length of the carrier frequency of the 
signal). Different wave propagation regimes described by (1.7) have been studied in [8]. 

Sound velocity c, nonlinearity parameter e, coefficients of viscosity q and dispersion 
D are expressed as follows in terms of water-saturated medium parameters: 

4 
K -}- "~ G K2 (J _ K / K , )  '~ 

C 2 - -  2 V 
9 m9 K2 ' 

I -[- (t  - -  m - -  K / K , )  m K  1 
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where 

,) o 4 ~,,. dG Kr 
"Et'C" = 03 KdPeffdK + ~ - U I i ~  -~- 2(g  2 -  ] )03t--~X 

\(t - m) KJ ] + 

[ )] 1 + ~-G + 2K 2 I + mcr \ + ,nc~ + % + 20K % -  2o 2 (~----,r~-------K/--Ka~ j '  

11 ---- 2c a C~I, D = ~]tp 1 - -  + a l u ~ - ~  ,: 

(1 .8 )  

K / (  K )  t - -  raK2. K2.  =I+E + c2 = 

= ' [ 1 opa (1 - -  m -  K/K1) ('1 - -  rn) (Pl/92 - -  t)  ( t  - -  K / K , )  K2,n - -  (1 - -  K J K , )  K - -  

4 C ." C22 = - -  a2C21 + ~ [(1 - -  m)/(l - -  m - -  K / K  0 - -  P.,/Pt]; 
3 (t --  ,n) t) 1 ' 

(i--m) 6 . K~ __ !1-- m)SK~" 

0 ----- (7(t __. m__ K/K1), % = 1 - -  m(7~ 1 tn2(72 KI, 

~1  = ( 1  - m )  P l / P  and  a2 = mP2/P a r e  s o l i d  and  l i q u i d  p h a s e  c o n c e n t r a t i o n s ;  r  = ( u  + 1 ) / 2  
( i  = 1,  2)  a r e  p h a s e  n o n l i n e a r i t y  p a r a m e t e r s .  I n  e x p r e s s i o n s  ( 1 . 8 )  f o r  z t h e  f i r s t  f o u r  
terms (physical nonlinearity) are specified by the nonlinear properties of the matrix, pores 
saturated with liquid, and solid phase particles. The rest of the terms (geometrical non- 
linearity) do not make a marked contribution to the value of e. 

The nonlinearity parameter for dry rock may be obtained from (1.8) (by assuming that 

K 2 = O) [91: edry=~+ i K [dK 4~ ~d~ + 3 dp)" At the limit K << max {Kz, K2/m} and 
2 K-{- ' -~G 

the model in question changes into a Rakhmatullin model which is dK 4 de  ~ << s2K./ra2 

used to describe soft soils. The nonlinearity parameter in a model of equal phase pressures 

was found in [4]. As follows from (1.8), it may be presented in the form sp=1+ (I-m) 5~ + 

mo---~+(1--m)~kK1 ) ~o= With the condition K I >> max {K, K2/m } solid phase 

compressibility may be ignored and expression (1.8) takes a simple form 

E 

Thus, Eq. (1.8) makes it possible to calculate the value of e for saturated porous rock 
from the dependence of dry rock elasticity moduli on pressure. 

2. We consider a weakly cemented granular material (sand type). On the basis of model 
representations of the Herz contact problem [I0] the connection between current porosity m 
and porosity in the unloaded condition m0 (structural porosity) is presented as 

m = too/(1 {- C~ ' ) ,  ( 2 . 1 )  

where p = (P2 - Pz)/KI; C and n are constants. Relationship (2.1) is written in the form 

Peff (i m) Kl t 'Ct ln  (~m~ 
kl/~ 

= - -  - - 1 )  . (2.2) 

Values of C and n may be found from the change in volumetric compressibility of dry rock. 
In this case external pressure p is connected with p by the relationship p = (i - m)Kip. By 
using (2.1) and considering grain compressibility we obtain an expression for volumetric 
deformation 
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r%Cl t + C'~" (t - -  too) p, 
t --- % + C~ '~ + t - ,% § C'~ ~ (2.3) 

which makes it possible to describe experimental data [6] for volumetric compressibility 
both for dense and for loose sand if we take C = 30.0 and n = 2/3 (from the Herz problem) 
with K I = 52.0 GPa. By using (2.2) the dependence of volumetric modulus K for weakly 
cemented material on effective pressure is presented in the form 

,~(j f~jl~ nOfi ~-i I ( 2.4 ) 

/ 

( '- '~ ) 
whence  i t  f o l l o w s  t h a t  w i t h  ~ ~ 0 c o e f f i c i e n t  K i s  p r o p o r t i o n a l  t o  ~1/3 K ..->-K 1 nmoC ~ J / 3  

and w i t h  ~ ~ 1/C l / n ,  K ~ KI~ 

I n  t h e  e l a s t i c  r e g i o n  s h e a r  s t r a i n s  a r e  d e t e r m i n e d  by s h e a r  modulus  G. C o n s i d e r i n g  c o n -  
t a c t  c o m p r e s s i b i l i t y  and a s s u m i n g  t h a t  t a n g e n t i a l  s t r e s s e s  a r e  l e s s  t h a n  n o r m a l  s t r e s s e s ,  t h e  
s h e a r  modulus  f o r  sand  may be a p p r o x i m a t e d  by t h e  r e l a t i o n s h i p  

~nC~ ~ m. t 
G - '  = GT' + (~ + c~,,)~ ~ _ ,~ ~ ( 2 . 5 )  

(G I is shear modulus for a monolith; ~ is a constant determined from experimental data). By 
using results in [6] for the experimental dependence of Poisson's.ratio on pressure, we ob- 
tain ~ = 0.63. As follows from (2.5), with small Peff, i/3 G ~ Peff , and with large Peff, 
G § GI. 

On the basis of relationships (1.8), (2.1), (2.4), and (2.5) numerical calculations 
were carried out for determining c, g, q, and D for both weakly cemented (sands of different 
porosity) and for strongly cemented rocks (andesite, granite). Permeability factor for 
sands was calculated from the Kozeny equation [i] k 0 = mad2/[180(l - m) 2] (d is typical 
grain size for porous material). Calculated results for weakly cemented materials are given 
in Figs. 1-4 where curves 1-4 correspond dry sand with structural porosities of m 0 = 20, 30, 
40, and 50%, and curves 1'-4' correspond to water-saturated sands with the same structural 
porosities. 

Shown in Fig. i is the dependence of sound velocity in sands on effective pressure. As 
follows from (2.4) an~ (2.5), sound velocity in dry sand with low effective pressures is 

I/6 
proportional to Peff . Water saturation of sand markedly increases sound velocity. With 
effective pressures of the order to 10 -I MPa the sound velocity for water-saturated and dry 
sand differs by more than a factor of five. With an increase in pressure the sound velocity 
in dry sand increases rapidl~ and it is comparable with that in water-saturated sand with 
pressures of the order of i0 MPa. 

Presented in Fig. 2 is the dependence of parameter e on Peff for different sands. It 
can be seen that in dry sand with effective pressures less than 1MPa there is strong depen- 
dence of e on pressure (as peff -213) and it markedly exceeds the correspond value for water- 
saturated sand in which g depends on Peff much more weakly. With pressures greater than i0 
MPa the value of e for water-saturated sand becomes greater than for dry sand. Anomalously 
greater nonlinearity parameters (e ~ i02) for dry sand may only be observed with low effec- 
tive pressures (Peff < i0 -I MPa). 

Compared in Fig. 3 are the results of calculations of s for water-saturated sand accord- 
ing to the model proposed and according to the Rakhmatullin model (curve 5). Since in the 
model of equal phase pressures Peff = 0, comparison is carried out for the relationship 
e(m) where in model (2.1) the nonlinearity parameter depends not only on current porosity m, 
but also on structural porosity m 0. As can be seen, the Rakhmatullin model makes it possible 
to describe quite adequately values of E with Peff ~ 1MPa and m 0 ~ 30%. 

Given in Fig. 4 is the dependence of attenuation factor q in water-saturated sand on 
effective pressure. It can be seen from the calculations that with pressures of the order 
of 1MPa there is a sharp reduction in q with an increase in effective pressure. This is 
mainly connected with a reduction in porosity (and consequently permeability) of the medium 
as a result of an increase in effective pressure. In calculating sand permeability the size 
of sand particles was selected as d = 1.0.i0 -3 m. In the case of quadratic attenuation for 
frequency the Q-factor is inversely proportional to frequency f: 
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Q = 1 / ( 4 ~ c / ) .  ( 2 . 6 )  

In (2.6) the dependence of sound velocity on frequency is ignored since as calculations show 
the dispersion does not exceed 1-2%. For sand with an initial porosity of 40% and f = i0 Hz, 
with an effective pressure of the order of I0 -z, i0, and 102 MPa, Q = 40, 80, and 600, re- 
spectively. Thus, attenuation caused by interphase friction may make a marked contribution 
to the overall attenuation of longitudinal waves propagating in a water-saturated porous me- 
dium. However, the role of this attenuation mechanism decreases markedly with an increase 
in effective pressure. 

Given in Fig. 5 are the results of calculating parameter e for strongly cemented mate- 
rials obtained by treating experimental dependences for elasticity moduli on pressure [7]. 
Curve 1 relates to Westerly granite with m0 = 1%, 2 and 3 to dry and water-saturated ande- 
site with porosity m0 = 7%. The elasticity moduli derived according to pressure were calcu- 
lated by means of a standard program using a fourth-order Lagrangian interpolation equation. 
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In order to find the dependence of nonlinearity parameter for water-saturated andesite on 
effective pressure on the basis of relationship (1.8) the following data were used: K2 = 
2.62 GPa, K I = 48.8 GPa, P2/Pl = 0.4, ~2 = 4. Since in the pressure range in question equa- 
tion of state (1.5) for the solid phase may be linearized, in the calculations it was 
assumed that ~i = I. 

As follows from Fig. 5, the value of e with small Peff for strongly cemented rocks may 
reach the order of 102 . In contrast to weakly cemented rocks the nonlinearity parameter for 
material with K/K I ~ 1 depends weakly on water saturation. It can be seen from the calcula- 
tions that attenuation caused by interphase friction is markedly less than that observed 
by experiment for strongly cemented rocks. 
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SOLUTION OF A NONSTATIONARY PROBLEM OF ELASTICITY THEORY 

G. V. Tkachev UDC 539.3 

In this paper we present a new approach to the solution of nonstationary anti-plane 
boundary value problems of linear elasticity theory for semi-bounded regions of the type of 
a halfspace or a layer with mixed boundary conditions both on their surfaces (systems of 
stamps) and also their interiors (cracks, inclusions). Application of an additional inte- 
gral Laplace transform with respect to the time for reducing the above-named boundary value 
problems to the solution of an integral equation gives rise to certain difficulties in its 
solution in comparison with problems of stationary oscillations, methods for the solution 
of which are, at the present time, well worked-out. The majority of processes, however, 
are essentially of a nonstationary nature and cannot be reduced to problems of harmonic 
analysis. The solution, therefore, of nonstationary problems calls for urgent attention. 

According to the method we propose, using properties of the inversion of Laplace and 
Fourier convolutions of two functions, the initial boundary value problem can be reduced to 
the solution of a Volterra integral equation of the first kind for the unknown function 
itself and not its integral transform. In this connection, the Laplace and Fourier trans- 
forms are carried over with the unknown function onto the kernel, which is given by analytic 
expression in explicit form. The original of this kernel is then found by Cagniard's method 
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